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Spatial synchronization of regular optical patterns
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We investigate an extended, nonlinear optical experiment, exhibiting the spontaneous formation of hexago-
nal patterns out of a stationary bifurcation. The system is exposed to a two-dimensional spatially periodic
forcing, namely, static hexagonal patterns, under variation of their spatial periodicity. Parameters are the
strength of the forcing and the distance to pattern forming threshold. The system response is quantitatively
characterized with different methods. We observe several locking regimes, where the system is entrained by the
forcing. Most of the locking regimes can be related to resonances between the different critical wave nhumbers
and the forcing wave number or its spatial harmonics. One particular locking appears to result from two of
these simple resonances in a kind of generalized order m:n synchronization. The width of the locking regimes
increases with forcing strength, apparently representing a spatial analog of Arnold tongues.
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I. INTRODUCTION under further increase of the control parameter. To establish a
bridge to the purely temporal phenomena, discrete systems

In nonlinear, spatially extended systems far from thermabuch as coupled maps or coupled oscillators are investigated.
equilibrium, spatial structures can develop spontaneously. lin the following, we will instead focus on continuous sys-
is an interesting question, how such systems respond to apms.
external stimulus. We here consider a forcing by injecting a External forcing of extended systems has been investi-
spatially structured signal. In certain instancgmchroniza- gated in a variety of configurations. The focus is on two
tion appears, i.e., the resulting system state corresponds ttasses, namely, convection patterns and chemical reaction-
the injected structure. The investigations presented in thigiffusion systems. The largest part of the literature on this
paper are connected to several fields of previous researctopic is theoretical or numerical, starting with spatially one-
Before introducing our nonlinear-optical experiment, relateddimensional forcing of spatially one-dimensional systems
properties of nonextended systems are summarized and wofgk—13]. In this context, analogies between spatial and tem-
on extended nonoptical and optical systems is briefly reporal nonlinear resonances were pointed[ddi. Moreover,
viewed. it was described that forcing can cause the formation of qua-

The synchronization of two coupled oscillators is a well- siperiodic structures, induced dynamics, the appearance of
known phenomenon, first described by Christiaan Huygengefects, or of spatial chaos. The state until the early nineties
in 1665 for pendulum clocks. Detailed investigations on theis summarized in the book by Walgraé].
response of nonlinear oscillators, subject to a periodic forc- Theories were then extended to particular cases of two-
ing, revealed that these not only lock onto a periodic externadlimensional system{d.4], and also to two-dimensional forc-
signal close to their own generic frequeney but can also ing [15]. Since there are many combinations of possibly co-
be entrained by other frequencies, being a rational mul- existing spatial and temporal instabilites, and
tiple with awinding number i= o'/ wy. The bandwidth of correspondingly a large variety of spontaneous spatio-
such a nonlinear resonance increases with the forcingemporal phenomena, so far no general theoretical treatment
strength—these bands of entrainment are calfedold  exists. Recent work goes beyond periodic forcing and fo-
tongues[1]. Today, research on oscillators focuses on thecuses on the possibility to synchronize and control spatially
synchronization of chaotic oscillators and the possible usehaotic systems—so far mostly in one-dimensional model
for secure communicatiofL,2]. equationd16-18.

According to their additional degrees of freedom, spa- Experimentally, forcing of a spatially continuous system
tially extended systems show a much wider spectrum of selfis quite demanding, when the system quantities to be modu-
organization phenomena than single nonlinear oscillatordated in space and time are flow fields, temperature profiles,
Spontaneous formation of spatiotemporal structures is invesr distributions of chemical compounds. It is simpler to ap-
tigated in many different areg8—5]—from biology over ply a spatially uniform, time-periodic forcing, which has
chemistry to different fields of physics, such as fluid dynam-been found to significantly alter the spatial structur&8—
ics, plasma physics, solid state physics, and nowadays eves]. Other variants of low-dimensional forcing are manipu-
in nonlinear optic§6]. When a control parameter exceeds alations at discrete locations on[24] or by modulating the
certain threshold, various simple spatial structures are olsidewalls[25].
served to spontaneously evolve in such systems. Mostly One possibility to implement the two-dimensional spatial
these turn into complex, very dynamic staf@srbulence  forcing is to structure the system itself, e.g., the boundary

conditions in the third spatial dimension. Examples are the
design of electrod€i®6], the thickness of a liquid lay¢27],
*Email address: ralph.neubecker@physik.tu-darmstadt.de the structuring of a catalytic surfa¢24,28,29, or the struc-
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ture of a heated surfad®0]. Since all these are fixed me-  As forcing, we use patterns of the same hexagonal sym-
chanical geometries, a continuous variation of forcing pametry and systematically change their spatial periodicity.
rameters, such as the spatial scale or the forcing strength, There are two important, possibly counteracting parameters,
difficult. namely, the forcing strength and the pump intensity. Increas-

Early experiments with such a fixed forcing were per-ing the first one should impose spatial order, while an in-
formed on electrohydrodynamic convection rolls in a quasi-crease in the second one provokes disorder. Measurements
one-dimensional geometri¢26], inspiring many of the fol- are carried out for different combinations of these param-
lowing theoretical papers. Here, the system could use th&rs: . _
second spatial dimension to adapt to the one-dimensional The manipulation of spontaneous optical patterns by spa-
forcing. Fully two-dimensional forcing of two-dimensional tally modulated forcing has been the topic of several, mostly
systems was performed in a Belousov-Zhabotinsky reactiof{1€0rétical report$43—44. The objectives of these authors
[28], in Benard-Marangoni convectiof80], and in catalytic have b_een different from the present paper, e.g., the select_lon
oxidation of carbon monoxidg24,29. of particular pattern states. Nevertheless, the role of the in-

Photosensitive systems offe,r much more experimentatleraCﬁO” of the spatial Fourier modes involved was already
flexibility, because light waves can carry almost arbitraryP0inted out in Ref[43], and first indication of spatial reso-
spatial and temporal profiles. An optical forcing has beer!aNC€ phenomena was given in Re#3,49. Experimen-
successfully used in photosensitive chemical reactjgas- tally, this forcing was.reallzed b_y modulatlon of the intensity
35]. Here we will make use of optical forcing in a nonlinear ©F Of the phase of a light wave inside the sys{er@]. In our
optical system, where the light intensity itself is a centralSyStém, we will instead inject an independent, spatially
physical quantity. modulated light wave.

The choice of the spatial distribution of the forcing is, in . 1he Space and time dependences of the intensity distribu-

principle, arbitrary. So far, simple space-periodic profilest'on observed in our experiment can be rather complex. In

[29,30,32,33 geometric shapes with dimensions larger tharorder to receive a quantitative picture, the massive informa-

the spontaneous length scal@9,36, forcing at a limited tion content of re.corded image sequences necessarily has to
number of discrete points in the plaf4], random hetero- be reduced to single, characteristic measures. To date, no
geneities(spatial noisg[34,35,37, or even complete images stand_ard procedures have been establlsheq fo_r such a task.
[31] have been used. In this paper, we regard the spatiaWe will apply and compare several characterlz_anon methods.
analog to the very first observation of temporal synchroniza£l! Of them regard only the system response, i.e., do not rely
tion by Huygens. This concerned the synchronization of £ the knowledge of the actual forcing profile.

periodic oscillator by a periodic rhythm; the spatial analog is

the forcing of spontaneous periodic structures with static and Il. THE SYSTEM

also spatially periodic patterns.

Only recently, such a scheme has been realized in a pho-
tosensitive chemical reaction, where the synchronization of The optical nonlinearity is provided by liguid crystal
hexagonal patterns was investigated in dé@8)]. In an ear-  light valve(LCLV) [47] . This multilayer device has a reflec-
lier experiment on a forced polymerization reaction, alreadytive read side and an intensity sensitiveite side. The write
first evidence of spatial synchronization effects had beemide consists of a thin photoconductor layer and the read side
seen[32]. The use of an optical system, as presented in thiss a thin liquid crystal layer. Both layers are separated by a
paper allows one to investigate such a spatial forcing in grealielectric mirror and sandwiched between two transparent
detail, revealing analogies to the classical synchronization oflectrodes to which an external, low-frequency voltage is
periodic oscillators. applied. An intensity peak of the write wave causes a local

The particular nonlinear-optical experiment we use be-decrease of the photoconductor impedance. As a conse-
longs to the class of the so-callsihgle-feedbaclsystems. quence, the voltage across the liquid crystal layer is locally
The system is well understood and offers a number of advarincreased, leading to reorientation of the liquid crystal mol-
tages, e.g., the clear separation of the two main ingredientscules and thus to a change of the local effective refractive
for spatial instabilities: diffractional spatial coupling and index.
nonlinearity. Because of the high sensitivity of the optical A read light wave passing the liquid crystal lay@nd
nonlinearity, it is possible to realize large aspect-ratio patbeing reflected by the internal mirjoacquires a phase pro-
terns even with low laser powers. Moreover, the dynamics ofile, which is determined by the intensity profile of the write
the spontaneous structure formation is determined by thevave at the other side of the LCLV. According to this inten-
comparably slow time constant of the nonlinearity. This al-sity dependence of the phase, the LCLV provides a saturable
lows us to record the complete spatial dynamics with conKerr-type nonlinearity.
ventional charged-coupled devi¢€ECD) cameras. The LCLV is put into an optical feedback loop. A uniform

Above a threshold of the pump intensity, hexagonal pat{pump laser beam is the first phase modulated by the LCLV
terns form out of a stationary bifurcatip88—4Q. For higher read side. The modulated beam is then fed back to the write
pump intensities, the patterns become increasingly disorside. Due to diffraction during the propagation through the
dered and dynami¢41,42. Experimentally, these patterns feedback loop, spatial phase modulations are transformed
are observable as intensity distribution in the cross section dhto intensity modulations. The LCLV transforms them back
a light wave. into a corresponding phase profile. In such a way, the feed-

A. The nonlinearity and the single feedback
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back is closed and the wave inside the feedback loop basi Near field Far field
cally modulates itself.
Since the optical feedback is almost instantaneous with_
respect to the LCLV response time, the system dynamics is E S
fully determined by the relaxation-type response of the z i E
LCLV, with a time constantr in the order of tens of milli- ;’ : -
seconds. The system can be described by an equation for tF o A
phase shifib(x,y,t) induced by the LCLM39], 'ﬁ'h -
T —12V2D+D=S(1y,1/),
1+ w1yt 1)~ -
S:CI)max{j-_tanh2 #lvwv_’_lg ext_Vth” (N ':E ;-“"‘;“ ki
% £ E
and by one for the intensity distributioh,(x,y,t) of the - b »
feedback wave at the LCLV write side: ® = B
" e
ly=|exd —i(L/2ke) V2 exp(—i®)|2l . 2
The saturation functio(l,,1¢) is determined by the LCLV
parametersb oy, K, ks, Vext, Vin. Different transverse g
coupling mechanisms in the LCLV are approximated by a 2
single diffusional term with an effective diffusion length 5
|~30 um; V2 being the Laplacian in the transverse = e
coordinatesx,y. Diffraction is covered by the operator 5
exp(—i(L/ZkO)Vf), with the propagation length and the j‘m
light wave numbek,=27/\. It can be shown that diffrac-

tion, not diffusion, is the spatial coupling mechanism respon-
sible for the modulational instability. FIG. 1. Autonomous, unforced system at the different levels of
By substituting Eq(2) into Eq. (1), we can, in principle, pump intensity(as indicatell From top to bottom: just above pat-
arrive at a single partial differential equation in time and intern forming threshold, at 2.5 times and at 7 times threshold. Left-
the two transverse coordinates for a real scalar variable, theand side, optical near fielt,(x,y); right-hand side, optical far
phase shiftb(x,y,t). The model also shows that the systemfield.
state is completely determined by recording the write side _ . : )
intensity distributionl ,(x,y,t) in the experiment. versely, a CO(respondmg preselection of spatial profiles does
When the intensity of the pump bedmexceeds a certain not exist in smglejfeedback systems. ;
; ) The class of single-feedback systems has become quite
threshold, the uniform state becomes modulationally un

. i popular in the last yeai$88,39,48,49 The use of LCLVs as
stable with respect to a crlt_lcal transverse wave nunkfger optical nonlinearity, first introduced by Akhmanov,
~2my3/(2\L) [38,39, leading to a stationary bifurcation: \prontsov et al, has proven to offer a great experimental

patterns spontaneously develop in the cross section of thgxibility in various implementations. In several variants, a
feedback wave. Experimental examples are shown in Fig. fotation[50,51] or a lateral shiff52] of the feedback wave
(as for the images in the remaining paper we use inverse grayas introduced to provide a nonlocal spatial coupling. Such
scale, i.e., dark corresponds to large intensiti#here are geometrical transformations break the continuous symmetry
also  higher-order  critical wave numbers ké“) by distinguishing a particular angle and/or length scale. In
~\[(4n—1)/3k. present, excited at larger pump valugs contrast, we use the fully symmetric system with diffraction
In Eq. 1, the forcing is represented by the intensity distri-2s & global spatial coupling mechani$b8], in correspon-
bution I¢(x,y,t), which is (incoherently added to the feed- dence with the original single-feedback scheme proposed in
back wave intensityl,,. Since the intensity distribution Ref.[38]. Concerning the nonlinearity, it is possible to intro-
l.(X,y.t) is a state variable, the forcing is additive and notduce an additional dependence of the feedback intensity on
parametric. the phase, e.g., with a resonator or a polarizer. This alters
The setup is calledingle-feedbacksince the modulated significantly the underlying nonlinearity and hence affects
wave is fed back to the optical nonlinearity only once, inthe observable spontaneous pattefi38,54. In the system
contrast to resonators with multiple passages of the lightsed here, the nonlinearity is of saturable Kerr type with a
wave. Optical resonators, moreover, impose boundary condonotonous intensity dependence of the induced phase.
tions on the optical field, resulting in the selection of spatial
(longitudinal and transvergsenodes. Diffractional losses and
possibly a wavelength dependence of the optical nonlinearity The experimental setup is shown in detail in Fig. 2. As a
lead to an additional favoring of particular modes. Con-light source, a frequency doubled Nd:YA@ttrium alumi-

B. Experimental setup
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. CCD BS54 MG tal is a conventional mixture for display6TN0304 by

i Merck, thickness Gum).

w2 i For the particular parameter settings, ideal hexagons are
o R L L8 hard to realize experimentally. Instead, we see only small
LU} o | - s hexagonal dpmains or even doma_ins With quasicry_stalline
L2 o ll ¥ character(wmch were not observed in previous experiments

Mo ‘ 0 <0 | l with a smaller aspect ratioHowever, even disordered spon-

taneous patterns contain only the critical Fourier modes, i.e.,
the corresponding far field consists of broadly excited rings
FIG. 2. Experimental setup. For details, please refer to the text. (Cf- Fig. 1). By applying an experimental control technique,
we have recently proven that hexagons are indeed a station-
) ) _ary system state, at least up to two times thresfi¢@j55.
num garnelt laser (. =532 nm) is used. The light power is Thjs corresponds to a theoretical analysis of a similar system
regulated by a rotatable half-wave plate/Z), acting to-  [3g] Consequently, by using hexagons, the system will be
gether with the internal polarizers of the optical isoldtOt). forced with one of its owrunstablé states—or at least a
The beam is cleaned and expanded to a diameter of around .y gimilar one when the forcing wave number is altered.
cm by the 4-f-arrangement L1, P1, L2. This pump beam ;o possible to simplify the system by cutting off the

enters the setup via the beam splitter BS1. higher-order critical wave numbers with the spatial low pass

The pump wave is reflected and phase modulated by thfe .
s iliter (L3, L4, and P3. In this case, almost perfect hexagons
LCLV read side(liquid crystal layef and then fed back to the can be found up to several times thresheld 42, However,

LCLV write side (photoconductor layery means of beam filteri lso inhibits forci th b K
splitters BS1 and BS2, a mirror M1, and a penta prism m2fltering also Inhibits forcing with wave num et >Ke .

During feedback, the modulated beam propagates freely ovéyloreover, the m_teractlon via spatial harmomcs_would be
a distance. =200 mm to the plane of aperture P2. The wavePlocked. Hence, in contrast to our previous experini8e,
front in this plane is imaged by the lenses L3, L4, L5 to thelow pass filtering is not applied.

LCLV write side. The aperture PRliameterD=8.5 mm) Another disturbance of perfect patterns results from small
cuts out the active area. inhomogeneities of the LCLV, caused by smooth variations

A rotatable dove prism D is used to correct residual rotain the thickness of the photoconductor layer. As a conse-
tions of the feedback wave around the optical axis, whichgquence, the pattern formation threshold slightly varies across
may occur through slight misalignments of the mirrors. Athe transverse plane. In order to achieve the best possible
shutter S1 in front of the LCLV write side can cut off the uniformity, only a small active area is cut out by the aperture
feedback wave and the forcing simultaneously. In the FourieP2. We must also consider that—at least for the autonomous
plane between L3 and L4, an aperture P3 can be used &ystem—the presence of boundaries causes the pattern to
low-pass filter the wave, which is, however, not used in thegrow smoothly from the centd#0]. Consequently, there is
present expe_riments. no sharp threshold, we will here refer to an average value of

For detection purposes, part (_)f the feedbapk wave leaves, ~18.8 u\Wi/cn?.
the setup through BS2. The forcing wave, which also leaves
the setup here can be blocked by an interference band pass
filter IF, which transmits the laser wavelength only. Hence, in
effect only the feedback wave is detected by the CCD cam- The write side of the LCLV has a broad spectral sensitiv-
era. The detection path is split into two arms in such a wayty, which allows us to use incoherent light for the forcing.
that both the near field, i.e., an intensity distribution corre-This will avoid interference between the forcing and the
sponding to the one at the LCLV write side, as well as thefeedback wave and the connected sensitivity to vibrations.
optical far field in the focal plane of lens L7, i.e., the spatial To generate almost arbitrary forcing patterns, we used a
power spectrum of the feedback wave, are recorded simultatata projector, containing a conventional halogen bulb as a
neously. light source and a transmissive liquid crystal disple¢€D).

We use a 12-bit digital CCD camei@CO SensiCain The display was imaged onto the LCLV write side by the
with a resolution of 648480 pixel. Movies of up to 331 lenses L5, L6. The projector intensity was attenuated by a
images are directly transferred to the random access memofixed set of neutral density filter@NF). Each of the 832
of the connected PC. In the present case, we used frame ratg$24 LCD pixels can take 254 gray levels. Due to a soft-
of around 7 frames per second. A conventional power meteware controlled linearization, the gray levels correspond to a
was used to control the optical power in front of the LCLV linear change in transmitted light intensity. The projector has
write side, of both the feedback wave and the forcing wavean internal memory for 31 images, which are loaded by a
The readings for white light forcing wave were scaled toserial interface. Since the measurements were carried out
illuminance units. with 59 different forcing patterns, each measurement had to

The LCLV is manufactured by Jenoptik LOS GmbH, be interrupted once for about 25 min for loading a new set of
Jena. We operate the LCLV with an external voltage ofimages.
2.5V, at 170 Hz(sine wavg. The photoconductor is amor- The projector illumination is not completely homoge-
phous silicon(thickness 3um) and the nematic liquid crys- neous across the area of the display, with a maximum inten-

BS1 LCLV S1 L5 M3\ ﬁ“ L6 NF Data Projector

C. Forcing
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sity variation of +30%. This smooth inhomogeneity was 160
compensated by using the inverted illumination profile as an Tl o o °
envelope of the forcing pattern. Due to this superimposed g (126) =049 o7
modulation amplitude, the remaining modulation depth us- E, 1201
able for the forcing profile is reduced. 5 100l
The operating point of the LCLV is shifted towards satu- <
ration by the additional illuminatioficf. Eq(1)]. Thus, the § 80
average of the forcing intensity had to be kept constant Té'- P!
throughout all measurements. The modulation amplitdde :
of the forcing profile was controlled by the gray levels of the 5 T 90 o @005
projector LCD only. £ 20l
Before turning to the measurements, we briefly have to D009 D003

(=

discuss the spatial harmonics, appearing due to the forcing.
Even without interaction with the spontaneously forming
pattern, the forcing intensity distribution(x,y) induces a

corresponding phase profile in_ the pump wa FIG. 3. Location of the measurements in the i
- . . .3 parameter field
~exf —i®]~exd —iS(l+(x,y))] [cf. Egs.(1) and(2)]. Since forcing amplitudeA; and pump intensity, . The numbers in brack-

the forcing pattern consists of few discrete mo#éigsonly,  ets denote the estimated relative forcing strength, as discussed in
this nonlinearity causes—depending on the amplitude of th&ec. Il E.

intensity pattern—the appearance of a number of harmonics.

In Fourier space, i.e., in the far field, these spatial harmonics For each fixed set of the parametes; (1), measure-
simply are linear combinations of the fundamental wave vecinents were carried out under systematic variation of the

0 50 100 150
Pump intensity Ip [pW/cmZ]

torsKe: forcing wave numbek; . The upper limit ofk; was given by
Thza .modulus of a resulting harmohicnode can be an the spatial resolution of the LCD in the data projector. We
integer multiple of the fundamental wave numkstraight” ~ USed a minimum wavelength of 6 pixels and a maximum

harmonid, but can also be an irrational multiple, when the Wavelength of 60 pixels. This resulted in a range of 0.275
harmonic mode is a noncollinear combination of diﬁerentgkf/kc$2'75j covereq with 59 sample points. .
fundamental wave vectorémixed” harmonic). Hence, irra- For each fixed forcing pattern, the system was switched
tional multiples of fundamental wave numbers naturally©On Py opening the shutter S1in front of the LCLV write side.
emerge in two dimensions. In the following, most important!n Such a way, the system itself is switched on simulta-

are the mixed harmonics with moduly®k; and \7k neously with the forcing. We have found in other experi-
The resolution of all modes in the systém is Iimitzad by theMents that this choice results in considerably shorter tran-

aspect ratio. Due to the finite diamerof the active area sients than for the case that the system is switched on first
each mode is broadened to a widdk~2#/D. For the

and the forcing has to reorder an already existing structure
spontaneous patterns, we have an aspect ratio of 33, i.e.,

[g?]. Just before opening the shutter, the camera was started,
broadening of the modes of about 3%. For the smallest forrecording a sequence of 331 images W't.h. a duration of
ing wave numbers, this broadening can reach 10%. around 45 s. The measurement for a specific parameter set

(Af,1p) took about one day. All measurements together cor-
respond to around 100 Gb of raw image data, which makes it
necessary to apply a computer based analysis to identify par-

Forcing is investigated under systematic change of theicular interesting system responses.
wave numbek; of the forcing pattern. Parameters for each  After each recording, the pump wave was blocked and the
such a measurement are the forcing amplitédeand the LCLV was “blinded” for a short period by an intense white
pump intensityl ;. As forcing, we choose peak-to-peak am- light to erase any possible residual memory of the last pat-
plitudes of the hexagonal patterns of 10, 35 and 138 LCDOern state. During the variation of the forcing pattern, a num-
gray levels with a constant offset at gray level 71. The pumpber of measurements of the autonomous, i.e., unforced sys-
was set to values just above threshold, to 2.5 times thresholeém were carried out, referred to eference measurements
and to 7 times threshold. During each measurement, thin the following. For this means, the LCD was set to the
pump intensity was checked to be constant withid%.  uniform offset level.
With these settings, eight measurements were carried out in As already mentioned, each measurement had to be inter-
the parameter fieldA; | ,), as schematically depicted in Fig. rupted once for about half an hour, to load the projector with
3. We renounced on a measurement with low forcing amplia new set of images. Also, the forcing wave number was not
tude and large pump intensity, since it appeared that forcinghanged monotonously. Starting at large vallgsyas sys-
would have no effect. tematically decreased, but a number of intermediate large
values were recorded later. The analysis of the recorded data
revealed that the system appeared to have drifted slightly
ISometimes the term “harmonic” is used for the fundamentalduring the measurement. The reordering of the sample points
modes themselves, while instead here, we use it for linear combiseemingly leads to jumps in some of the extracted quantita-
nations of those. tive measures. All of the measures derived below were cor-

D. The measurements
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rected with the help of the reference measurements. How Near field Far field
ever, due to the limited number of reference measurements
complete correction was not possible.

The drift was presumably caused by changes in the lak
temperature—the LCLV is qualitatively known to be some-
what temperature sensitive. Depending on the particularn_
measurement, the temperature change could readh <
=2 K during the day and less thad K between different
days.

E. Forcing strength

A statement of the forcing strength, i.e., the amplitude of
the forcing intensity modulation, makes only sense when
compared to the amplitude of the spontaneous patterns. Th:a
forcing pattern itself is well defined, consisting of three pairs ]‘
of conjugated Fourier modes with given amplitudes. In con-ﬂ”
trast, the spontaneous system state, particularly further abov.,+
threshold, is determined by the excitation of one or more
critical rings in Fourier space. We have found the standard
deviationa,, of the near field intensity distributioly, to be a
suitable measure to compare the spontaneous excitation t
the imposed one:

1 N
ow= \in=g 2 (wi= () 3

kik=103

Here,1,; is the intensity at pixel numbgrof the CCD cam-
era,(l,,) is the average value, and the sum goes oveNall
pixels. We have found that, in particular, the relative standard
deviation of the spontaneous patterns does not depend ver
much on the pump intensity,, /1 ;,~0.781+ 3 %.

In a separate measurement, the white forcing light is com-3
pared to the monochromatic feedback wave by measuring‘lil’
the phase shift induced in the LCLV. An illuminance of 7.02 4"
Ix induces the same phase shiftas a monochromatic write "
intensity of 1 uW/cn?. Together with the dependence of
Al;=0.449 Ix per LCD gray level, and the standard devia-

tion of an ideal hexagon, we arrive at a corresponding rela-

tive standard deviation of the forcing patterns @f/A¢ FIG. 4. Examples of snapshots of the system response to hex-
=0.12861 W/ (cn¥) per gray level. agonal forcing at different wave numbées indicatefl The images

In Fig. 3, the ratiosr;/o,, between both standard devia- are presented in inverse gray scéttark = large intensity. For
tions are given in brackets as an estimation of the relativgomparison, the top patterns present the unforced system. In this
forcing strength. Within this definition, our measurementsexample, the pump intensity just above threshold and a moderate
vary between weak forcing of some few percent and strondorcing amplitude is appliedA; = 35). Presented are the near fields
forcing, where the forcing amplitude is in the order of the (Ihs column and the far fieldgrhs).
spontaneous excitation.

S
O A
e

forcing wave number equals the basic critical wave number
ll. RESULTS ki=k.. In order to achieve a more quantitative picture, it is
necessary to extract adequate measures from the often com-
o ) plex system response. Here, we renounce on computing the
Under variation of the forcing wave number, we observec oss correlation between forcing patterns and system re-

an almost binary response of the system. Either, it comgn,nse since this would not cover possible spatial phase
pletely locks onto the forcing, which means that the systempiste between both

state becomes steady state and has a similar spatial structure
and the same orientation as the forcing pattern. Otherwise,
the system reacts with pronounced spatiotemporal disorder.
A first impression can be gained from the snapshots pre- The recorded far field gives valuable information about
sented in Fig. 4. Clearly, the system is entrained when th&hich wave numbers are excited. For this means, the far field

A. Synchronization

B. Wave number spectrum
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FIG. 5. Left-hand side: identification of the critical wave num-  FIG. 7. Wave number spectrum for large forcing amplitude and
bers from the reference measurements. Right-hand side: check afedium pump intensity. In the rhs panel, straight lines are added,
the approximate relation between the different order critical wavedenoting the expected slopes for different harmonics of the forcing
numbers. wave number.

intensity distributionl ¢,(K) is integrated over the angle, thus the forcing is reflected in different oblique straight lines, be-
reducing the two-dimensional waweector spectrum to a |onging to the forcing wave numbég,~ k; and the different
one-dimensional waveumberspectrumly . harmonics of the forcing modes. As expected, the effect of

The wave number spectrum is first computed for the refforcing is found to be most pronounced for large forcing
erence measurements to identify the spontaneously excitegrength and low pump power.
wave numbers. In Fig. 5, the basic critical wave numiker Figure 7 shows a particular measurement in more detail.
=k and at least three higher-order critical wave numbersThe added straight lines correspond to slopek;dk;,,=1,
k(" are clearly identifiable. These do not change considerd/\3, 1/2, 147, and 1413, verifying that all these harmon-
ably between the measurements. The resulting valukS'of ics are indeed excited. Diffusion damps higher wave num-
have an error of- 3%, which is around twice the resolution bers, which explains the lower excitation of higher harmon-
of this evaluation, limited by the pixel size of the CCD cam- ics. The third straight harmonic wave numbés; 3 not even
era. The approximative relation between the different criticavisible anymore, while the\7 mixed harmonic still is
wave numbersk(c”)w\/((4n— 1)/3)k; [38] is plotted for present, because 12 instead of just 6 modes have this modu-
comparison(right-hand side of Fig. b lus. Close to they13 harmonic, the 3 harmonic exists.

In Fig. 6,1, is shown for the forcing measurements. The Together, these represent 18 modes, which in the same man-
individual plots are schematically arranged according to thener balances the diffusional damping.
location of the parameter pairA¢,l,) in the parameter Two important findings can be taken from Fig. 6. First, if
plane, as depicted in Fig. 3; the pump intensity increasethe system locks onto a particular forcing wave number,
from left- to right-hand side, the forcing strength increasegpower is even drawn out of other critical wave numbers. This
from bottom to top. In each individual graph, the abscissds most prominent fork;=k{®)~ 1.5 (for strong forcing,
represents the scaled wave numkegy of the far field, the small or medium pump powgrwhen even the excitation of
ordinate is the scaled forcing wave numbderand |, is  the fundamental critical wave number is reduced.
shown in inverted gray scale. The pronounced vertical lines Second, we find a “mode pulling” effect, when the forc-
correspond to the different critical wave numbekg), ing wave numbek; comes close to one of the critical wave
which are almost always excited. The excitation induced bynumbersk{"™. In the wave number spectrum, this corre-

sponds to the vicinity of a crossing between an oblique and a

25 25 vertical line. Here, the excitation completely migrates from
a2 11 I - the critical wave number into the forcing wave number.
- .

0.; /} Till 0.;

05115225

C. Spectral localization

There is a rather simple method to characterize the degree
‘ of spatial order by utilizing the far field. For periodically
o 1 s \ “( o i patterns, Fhe total power in the far figld i; distributed among
05 1 LS 2 25 051 152 25 051 152 25 few, localized modes, while the spatial disorder corresponds
o5 I > - Il k fk to broadly excited areas. Consequently, localized modes cor-

{: 1.5

4 |

respond to large values appearing in the frequency distribu-

*: 1.5 | 18 1.5 . . . oy . . .
< | N tion of the far field intensities, while in the disordered case
05 ol os the maximum intensity will be considerably lower. The ma-
. . . . y
05 11(1; 225 05 lklﬂf 225 jority of the amplitudes will, however, always be zero or
i il very small.

FIG. 6. Wave number spect(@ inverse gray scajeas a func- Nevertheless, with the standard deviation of the far field
tion of far field wave numbekq,, and forcing wave numbes; . The  intensity distributionot,,, the presence of localized modes
plots are arranged according to the values of the parameter pa@@n be detected. In this analysis, the zero order was cut out,
(At ,1,): the forcing strength increases from bottom to top, thesince it is always localized, carrying the largest amplitude in
pump intensity from left- to right-hand side. the far field. Deleting the zero order makes also sense in the
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%107 represent the average values of the reference measurements
5 " " " of the unforced systems. The dependence of these reference
values on the pump intensity reflects the general tendency of
4t ;o~ . a decreasing spatial order with an increasing pump strength.
T = e - - ] The important point here is the appearance of a number of
! ] peaks. These indicate different locking regimes, where the
system response collapses from a broad spectral excitation to
few modes. Again, we find that the effect of forcing increases
with forcing amplitude(from bottom to top in Fig. Pand, in
general, becomes weaker with increasing pump pdfvem
! ] left- to right-hand side in Fig. 9 In particular, the peaks
;! become more pronounced and wider with increasing forcing
strength. This phenomenon appears to be a spatial analogy to
% 5 7 6 o the Arnold tongue$1].
Time t [s] The most prominent peak, which is present in almost ev-
ery measurement, belongs to the locking of the forcing wave
FIG. 8. Typical temporal evolution of the far field standard de- number onto the fundamental critical wave numhker k. .
viation fork; /k.=1.03(solid line), =1.61(dashed ling and=2.64  The other peaks belong either to a locking of a harmonic of
(dash-dotted line The pump intensity IS set just above threshold e forcing pattern ont&, or to a locking of the forcing onto
and the forcing amplitude is mediurh(=35). a higher critical wave number. In particular, we find the
mixed forcing harmonics,/3k; and y7k; to lock ontok..
respect that we are only interested in spatial modulations. Also, the entrainment df; = k(cz) is observed. By chance, the
The computation of the far field standard deviatiop,  |ocking at 3k;=k. coincides with a locking of another
allows us to follow the dynamics of the forced patterns. Theforcing harmonic on the second critical wave numk@ik;
temporal evolution ofr¢,(t), presented in Fig. 8, shows that _(2)— J7I3.. Dashed vertical lines in Fig. 9 indicate

the transients are rather short. After typically less than 2 Sthe;e ratios betweeki”) andk; . We see so far no indication
the system is in its asymptotical state. Only close to pro- f locking at integer ratiok, = 2k, or 2k, =k, , even though

nounced locking regimes, the transient can take longer, b"{ is second harmonic of the forcing has already been identi-
never more than few seconds. Hence, the largest part of t d to be excited in Fig. 6

recorded system response corresponds to the statistically sta-.l.he different locking constellations are demonstrated in

tlor_:_&;]ry stat%. d deviati df Fig. 10, where the near field and the far field of the system
e standard deviation, was computed for a represen- response are shown. From the location of the modes in the

Eﬁ:'ve nurlr:l?cer OTI |][nages from each setqu_encle gng averat% r field, the described relations between forcing modes and
€ resuit for all forcing measurements IS plotted over &, .o \wave numbers can easily be verified. We note that
scaled forcing wave number in Fig. 9. The horizontal lines

some near field patterns in Fig. 10 are less ordered in the
lower central part. We assign this to the influence of the

[arb. units]
w

<,far
~

=z i A ] i 5 z remaining inhomogeneity of the LCLV. For the small forcing

5 5 M ] ; N . wave number ak;=k./\7, we observe small bright spots
5@2 S J\ 2 : 2 J\I\ © ordered around darker and larger ones. The size of the small
erE L ' L = spots corresponds to the spontaneous patterns. The larger
P S spots result from the fact that we have a defocussing nonlin-
R 4 4 earity. In a very simple picture, ea¢large spot of the forc-

£ z z A z o] ing pattern can be imagined to induce a defocussing lens in
ENRETE B —ara ] the LCLV read side, i.e., the pump intensity is refracted out
s 0.5 1 2 5 0.5 1 2 0.5 1 2 Of these areas.

P K7k, So far, the quantitative analysis of the far field does not
£3f 1 03 yield information about therotationa) symmetry of the

I A W evolving patterns. Also, not much can be deduced about a
Sl e possible dynamics of the system state, either due to intra-

k/k, /K, mode dynamics or due to any dynamics hidden in the phases
of the modes—such as in the case of moving patterns or
FIG. 9. Standard deviation of far field intensities, (in arbi-  waves.
trary unit9 plotted against the scaled forcing wave numiefoga-
rithmic scalg. The plots are arranged schematically in parameter
plane according to the values Af (increasing from bottom to top
and I, (increasing from left- to right-hand sigleThe horizontal Rather the opposite approach to characterize the system
lines correspond to the unforced system, the vertical, dotted linegesponse is to consider the dynamics only, completely ignor-
indicate expected resonanceskatk., \3ki=k., k;=k®, and  ing any spatial order. For this means, we compute the auto-
for strong forcing also at/7k;=k,. correlation of the local temporal evolution of the near field.

D. Characterization of the dynamics
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Mear field Far field ' /\J\\ o
g
e £ S 5 5
T. £ 4 S o -
<« : 5 e J\_/\ A R ]
% LT =S AW T
e 1 =M 02 - 0.2 - -
0.5 1 2
25 : o > : s kf/kc
I S VI VA R A Y
5 » 1 , - 0.2 . M
- - 05 1 2 05 1
k /k k/k
Mu w .o f c f c
[ o FIG. 11. Time constants characterizing the near field dynamics
4" e e plotted against the scaled forcing wave number, in double logarith-
A mic scale. Note the different scales fgy. The plots are arranged
A i schematically in parameter plane according to the values; ¢in-
creasing from bottom to topand|, (increasing from left to right-
hand side
-
i Here,l,,(x,y,t)=1,,—(l,,) is the recorded intensity sequence
5 R lw(X,y,t), subtracted by its averadé,,).
Tog™ ™ b From the spatially averaged autocorrelation function, we
J'L,, i can extract a typical time constanf by fitting an exponen-
-‘?g;,__ F oyl tial function into the first decay. The fit interval is adapted to
i the steepness of the decay. A large valueporresponds to
+ slow dynamics or even a static pattern. The maximum de-
tectable value ofry is limited to around 30 s, which is the
duration of the analyzed sequences.
d e Figure 11 presents the time constants for all measure-
" P R W ments, plotted over the scaled forcing wave number. We
I B again find the typical peak structure, indicating the different
Vi s g » % "' locking regimes. Obviously, in the case of locking, the static
L . W forcing patterns ideally cause a static system response. The
i G underlying tendency of the unforced system to build up a
: turbulent state leads to a residual dynamics. As a conse-
quence, the observed time constants decrease with increasing
pump power.
i In comparison with the results of the preceeding section,
. i we here see a more pronounce locking, i.e., a peak of larger
ﬁf i : ¢: g time constant, at low forcing wave number, high forcing am-
" Ry - plitude, and low and medium pump intensity. The rather
L o T broad peak probably contains a resonanceyak;=k,
it el U marked by vertical lines.
We also note a rather fluctuating background fgfk;),
in particular, for the case of weak forcing and medium pump

PHYSICAL REVIEW E 67, 066221 (2003

intensity. Part of these fluctuations, in particular, the jump at

FIG. 10. System response in the unforced dasp), compared .
to typical Iocki)r/1g consteIFI)ations, as indicated. The ::)ump inF;ensity iskf /k;~0.75 and.the sma]ler dips Bf/k;> 1'4. are caused by
2.5 times threshold, forcing is strong. the_ above mentioned (_1r|ft and the reordering of the sample
points. Moreover, the time constants found for the reference
measurements vary between the different parameter sets.
Included are only the last two-third of every recorded se-Thjs is the consequence both of the drift and of the general
quence, in order to be sure to omit the transients. The autetependence of the time constant on the pump intefi4ity
correlation is averaged in space as
E. Degree of spatial symmetry

Finally, we characterize the degree of spatial order by

<K(At)>w:f lu(x.y,t=ADl(xy,Hdtdxdy.  (4) qguantifying the degree of hexagonal symmefB8]. We
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FIG. 12. Hexagonal symmetry parametér characterizing the FIG. 13. Comparison of unforced system respoqigger pan-

average degree of sixfold symmetry, plotted over the scaled forcing|g \ith the one for locking atk;=0.716k. (lower panels at

wave numbefin logarithmic scalgfor all measurements. The plots  strong forcing and medium pump. For better visualization, the criti-
are arranged schematically in parameter plane according to the valsy| wave number circles have been added.

ues ofA; (increasing from bottom to tgpand |, (increasing from
left- to right-hand sidp fluctuations in the plots oH(k;) are considerably smaller.
This indicates that the above mentioned influence of tem-
again use autocorrelation functions, now correlating an indiperature drifts mainly affects the LCLV time constamnt
vidual snapshot to its rotated counterpart. The main peak ak;=k. seems to have a double peak
structure, at least for stronger forcing. This results possibly
C(G,Xo-YO)ZJ 1,06y (X y")|dx dy, 5) from a resonance a(/§kf=kf:2)=>kf/kczo.2_382. This as-
sumption is supported by the corresponding wave number
spectrum in Fig. 6.
x',y’ being the rotated coordinates afidhe rotation angle. For strong forcing and medium pump intensity, an extra
This is done for many rotation centers,(y,), over which  peak is observable between the/k.=+3 and thek;/k
we averageC(6,Xq,Yo) —(C(6))xoy0- The resulting average =1 locking regimes, with its peak value kt/k.=0.723.
rotational autocorrelation function will peak at anglesébf The corresponding patterns are shown in Fig. 13. In fact, this
=2x/N, when the analyzed structure containsNafold ro- peak would be compatible with a resonance of {ffe har-
tational symmetry. Assuming that only a limited number of monic of the forcing on the third critical wave number at
discrete rotational symmetries are present, the contributioriéf): V11/%.. However, these wave numbers are all quite
to the different peak amplitudes can be decompd&&].  large and strongly damped. It does not seem very reasonable
This yields several symmetry parameters, measuring thghat these should induce such a pronounced locking.
presence of roll-, square-, or hexagon-patterns. Moreover, There is an alternative, although purely empirical expla-
quasipattern symmetries can be detected. We will here useation, which also yields a good quantitative correspondence
only the measure for the hexagonal symmethy: 5[(C(#  [59]: The rational winding numbers of nonlinear resonances
=60°))+(C(6=300°))]— O, whereO stands for a constant in oscillators can be found from the Farey construcfiéd—
offset corresponding to a continuous symmetry, e.g., causegl]. A particular m:n resonance has two “parent” resonances
by the spatial noise. at ratios p:q and r:s between the forcing and the natural fre-
From the present analysis, we find—with one quency. The resulting winding number is found by adding
exception—no presence of other rotational symmetries, nelRominators and denominators separatety=p+r, n=q
ther tiling patterns =2, 3,4 nor quasipatternd=_8, 12. +s. To receive the full Farey tree, one has to start with the
The exception is a small contribution of twofold symmetry atratios 0:1 and 1:1 and to carry on with all possible combina-
kfzkff), for large forcing amplitude and low and medium tions. Devil's staircase, which is well known to contain all
pump power. In these particular cases, we also find that twawinding numbers of particular nonlinear oscillators, is just
of the six modes on the second critical circle are strongepne branch of the Farey tree.
excited than the others. For this finding, we do not have an In our case, the peak in question is the “child” of the
explanation so far. adjacent resonances, resulting in an expected winding num-
The average of the hexagonal symmetry parameter ber of (1+1)/(1+/3)~0.732, which is in good agreement
found for a representative number of images of each sewith the experimental value. Higher-order children reso-
guence is plotted in Fig. 12 over the forcing wave numbernances are less excited and therefore here we see only the
This symmetry analysis gives the clearest peak structureshild of the two dominant basic resonances.
Again, we find the same locking regimes as before, which The application of this scheme can also reproduce the
means that locking is always connected to a hexagonal sysbsence of simple 1:2, 1:3, 2:3, etc., resonances. Following
tem response. Compared to the analysis of the dynamics, thke Farey construction, these rational winding numbers are
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all based on the presence of the fundamental 0:1 windingystem, namely, to promote disorder with increasing distance
number. However, such a 0:1 “resonance” does not appear ifrom threshold.
our system; a spatially uniform forcing(=0) leads to a The system response has been quantitatively characterized
constant phase shift of the read wave, which does not affestith respect to the spectral localizatigpresence of local-
the write side intensity distribution. Hence, the system doeszed Fourier modes the dynamics and the rotational sym-
not respond to a uniform forcing—at least as long as saturametry. All measures give very similar results, from which we
tion effects due to strong forcing are negligible. conclude that the system response in the case of locking
In a previous publicatiofil5], a spatial period tripling had always is a static hexagonal pattern and a very disordered
also explicitly been predicted for forcing a two-dimensionaland dynamic state otherwise. The analysis of the far field
system with hexagonal patterns and has not been found heraso revealed that, in the case of locking, spectral power is
The system considered there was assumed to exhibit a speencentrated on the excitétbrcing) mode, draining power
tiotemporal Hopf bifurcation, which is in contrast to the op- also from other critical wave numbers.
tical system investigated here. In a conceptually similar investigation of forcing of a
For one-dimensional systems, the analysis of theoreticakaction-diffusion system, Dolnikt al. also observed some
models had lead to the prediction of quasipatt¢Bjswhich  regimes of entrainment, however, at different forcing wave
are also not observed in our experiment. This may be conaumbers. So far, it is not clear that whether these differences
nected to the difference in dimensionality of the systemsare due to differences in the underlying systems, in the ex-
The questions of forcing induced defects, which had alsgerimental procedure or in the data analyses.
been found in one-dimensional models, is still open. The Our findings indicate that in two-dimensional systems, a
image data, gathered in our experiment, have not yet beemnealth of resonances can appear. Besides the various reso-

analyzed in this respect. nances between the different order critical wave numbers and
the forcing and its spatial harmonics, resulting children reso-
IV. CONCLUSION nances may be expected. Even though the aspect ratio

) . achieved here is rather high—at least for optical pattern for-

We have presented experimental results on spatially perimation experiments—the wave number definition is limited
odic forcing of a nonlinear optical, pattern forming system.py the aspect ratio. This possibly promotes a merging of
Forcing was carried out under a systematical variation of thgjifferent locking regimes. For a more precise determination
forcing wave number and for different values of forcing of |ocking regimes, this restriction has to be overcome inde-
strength(between several and about 100% of the natural patyendently of the type of system.
parameter, the pump intensity. . nonlinear system can successfully be synchronized by im-

We found that the spontaneous optical structures can bgosed structures. The underlying mechanisms appear to be
entrained by an external forcing with static patterns. Theyite general. Therefore, similar synchronization—or rather
entrainment can even be observed far above threshold Eynchorization(from xwpwov: place—phenomena should
pattern formation. A number of different locking regimes pe ghservable in many other extended systems as well. Even
were found, which are mostly caused by a resonance of thgough we demonstrated locking onto regular system states,
forcing wave number or one of its spatial harmonics with theihe results give hope that synchorization of more complex
fundamental or the first higher-order critical wave number. Ingiates, j.e., of spatiotemporal chaos is also possible. Apart
contrast to one-dimensional systems, irrational multiples of;om the fundamental aspects, this would open the perspec-

the fundamental wave number generically appear as spatigle for a realization of parallel secure data transmission, as
harmonics. The width of the observed locking regimes in-yroposed recentlf63].

creases with forcing strength, which is in obvious analogy to
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