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Spatial synchronization of regular optical patterns

R. Neubecker* and O. Jakoby
Institute of Applied Physics, Darmstadt University of Technology, Hochschulstrasse 6, 64289 Darmstadt, Germany

~Received 19 June 2002; revised manuscript received 13 March 2003; published 30 June 2003!

We investigate an extended, nonlinear optical experiment, exhibiting the spontaneous formation of hexago-
nal patterns out of a stationary bifurcation. The system is exposed to a two-dimensional spatially periodic
forcing, namely, static hexagonal patterns, under variation of their spatial periodicity. Parameters are the
strength of the forcing and the distance to pattern forming threshold. The system response is quantitatively
characterized with different methods. We observe several locking regimes, where the system is entrained by the
forcing. Most of the locking regimes can be related to resonances between the different critical wave numbers
and the forcing wave number or its spatial harmonics. One particular locking appears to result from two of
these simple resonances in a kind of generalized order m:n synchronization. The width of the locking regimes
increases with forcing strength, apparently representing a spatial analog of Arnold tongues.
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I. INTRODUCTION

In nonlinear, spatially extended systems far from therm
equilibrium, spatial structures can develop spontaneousl
is an interesting question, how such systems respond t
external stimulus. We here consider a forcing by injectin
spatially structured signal. In certain instances,synchroniza-
tion appears, i.e., the resulting system state correspond
the injected structure. The investigations presented in
paper are connected to several fields of previous resea
Before introducing our nonlinear-optical experiment, rela
properties of nonextended systems are summarized and
on extended nonoptical and optical systems is briefly
viewed.

The synchronization of two coupled oscillators is a we
known phenomenon, first described by Christiaan Huyg
in 1665 for pendulum clocks. Detailed investigations on
response of nonlinear oscillators, subject to a periodic fo
ing, revealed that these not only lock onto a periodic exter
signal close to their own generic frequencyv0 but can also
be entrained by other frequenciesv8, being a rational mul-
tiple with awinding number m/n5v8/v0. The bandwidth of
such a nonlinear resonance increases with the forc
strength—these bands of entrainment are calledArnold
tongues@1#. Today, research on oscillators focuses on
synchronization of chaotic oscillators and the possible
for secure communication@1,2#.

According to their additional degrees of freedom, sp
tially extended systems show a much wider spectrum of s
organization phenomena than single nonlinear oscillat
Spontaneous formation of spatiotemporal structures is in
tigated in many different areas@3–5#—from biology over
chemistry to different fields of physics, such as fluid dyna
ics, plasma physics, solid state physics, and nowadays
in nonlinear optics@6#. When a control parameter exceeds
certain threshold, various simple spatial structures are
served to spontaneously evolve in such systems. Mo
these turn into complex, very dynamic states~turbulence!
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under further increase of the control parameter. To establi
bridge to the purely temporal phenomena, discrete syst
such as coupled maps or coupled oscillators are investiga
In the following, we will instead focus on continuous sy
tems.

External forcing of extended systems has been inve
gated in a variety of configurations. The focus is on tw
classes, namely, convection patterns and chemical reac
diffusion systems. The largest part of the literature on t
topic is theoretical or numerical, starting with spatially on
dimensional forcing of spatially one-dimensional syste
@7–13#. In this context, analogies between spatial and te
poral nonlinear resonances were pointed out@11#. Moreover,
it was described that forcing can cause the formation of q
siperiodic structures, induced dynamics, the appearanc
defects, or of spatial chaos. The state until the early nine
is summarized in the book by Walgraef@5#.

Theories were then extended to particular cases of t
dimensional systems@14#, and also to two-dimensional forc
ing @15#. Since there are many combinations of possibly c
existing spatial and temporal instabilities, an
correspondingly a large variety of spontaneous spa
temporal phenomena, so far no general theoretical treatm
exists. Recent work goes beyond periodic forcing and
cuses on the possibility to synchronize and control spati
chaotic systems—so far mostly in one-dimensional mo
equations@16–18#.

Experimentally, forcing of a spatially continuous syste
is quite demanding, when the system quantities to be mo
lated in space and time are flow fields, temperature profi
or distributions of chemical compounds. It is simpler to a
ply a spatially uniform, time-periodic forcing, which ha
been found to significantly alter the spatial structures@19–
23#. Other variants of low-dimensional forcing are manip
lations at discrete locations only@24# or by modulating the
sidewalls@25#.

One possibility to implement the two-dimensional spat
forcing is to structure the system itself, e.g., the bound
conditions in the third spatial dimension. Examples are
design of electrodes@26#, the thickness of a liquid layer@27#,
the structuring of a catalytic surface@24,28,29#, or the struc-
©2003 The American Physical Society21-1
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ture of a heated surface@30#. Since all these are fixed me
chanical geometries, a continuous variation of forcing
rameters, such as the spatial scale or the forcing strengt
difficult.

Early experiments with such a fixed forcing were pe
formed on electrohydrodynamic convection rolls in a qua
one-dimensional geometries@26#, inspiring many of the fol-
lowing theoretical papers. Here, the system could use
second spatial dimension to adapt to the one-dimensi
forcing. Fully two-dimensional forcing of two-dimensiona
systems was performed in a Belousov-Zhabotinsky reac
@28#, in Bénard-Marangoni convection@30#, and in catalytic
oxidation of carbon monoxide@24,29#.

Photosensitive systems offer much more experime
flexibility, because light waves can carry almost arbitra
spatial and temporal profiles. An optical forcing has be
successfully used in photosensitive chemical reactions@31–
35#. Here we will make use of optical forcing in a nonline
optical system, where the light intensity itself is a cent
physical quantity.

The choice of the spatial distribution of the forcing is,
principle, arbitrary. So far, simple space-periodic profi
@29,30,32,33#, geometric shapes with dimensions larger th
the spontaneous length scales@29,36#, forcing at a limited
number of discrete points in the plane@24#, random hetero-
geneities~spatial noise! @34,35,37#, or even complete image
@31# have been used. In this paper, we regard the sp
analog to the very first observation of temporal synchroni
tion by Huygens. This concerned the synchronization o
periodic oscillator by a periodic rhythm; the spatial analog
the forcing of spontaneous periodic structures with static
also spatially periodic patterns.

Only recently, such a scheme has been realized in a p
tosensitive chemical reaction, where the synchronization
hexagonal patterns was investigated in detail@33#. In an ear-
lier experiment on a forced polymerization reaction, alrea
first evidence of spatial synchronization effects had b
seen@32#. The use of an optical system, as presented in
paper allows one to investigate such a spatial forcing in g
detail, revealing analogies to the classical synchronizatio
periodic oscillators.

The particular nonlinear-optical experiment we use
longs to the class of the so-calledsingle-feedbacksystems.
The system is well understood and offers a number of adv
tages, e.g., the clear separation of the two main ingredi
for spatial instabilities: diffractional spatial coupling an
nonlinearity. Because of the high sensitivity of the optic
nonlinearity, it is possible to realize large aspect-ratio p
terns even with low laser powers. Moreover, the dynamics
the spontaneous structure formation is determined by
comparably slow time constant of the nonlinearity. This
lows us to record the complete spatial dynamics with c
ventional charged-coupled device~CCD! cameras.

Above a threshold of the pump intensity, hexagonal p
terns form out of a stationary bifurcation@38–40#. For higher
pump intensities, the patterns become increasingly di
dered and dynamic@41,42#. Experimentally, these pattern
are observable as intensity distribution in the cross sectio
a light wave.
06622
-
is

-
i-

e
al

n

al

n

l

s
n

ial
-
a
s
d

o-
of

y
n
is
at
of

-

n-
ts

l
t-
f
e

-
-

t-

r-

of

As forcing, we use patterns of the same hexagonal s
metry and systematically change their spatial periodic
There are two important, possibly counteracting paramet
namely, the forcing strength and the pump intensity. Incre
ing the first one should impose spatial order, while an
crease in the second one provokes disorder. Measurem
are carried out for different combinations of these para
eters.

The manipulation of spontaneous optical patterns by s
tially modulated forcing has been the topic of several, mos
theoretical reports@43–46#. The objectives of these author
have been different from the present paper, e.g., the selec
of particular pattern states. Nevertheless, the role of the
teraction of the spatial Fourier modes involved was alrea
pointed out in Ref.@43#, and first indication of spatial reso
nance phenomena was given in Refs.@43,45#. Experimen-
tally, this forcing was realized by modulation of the intens
or of the phase of a light wave inside the system@46#. In our
system, we will instead inject an independent, spatia
modulated light wave.

The space and time dependences of the intensity distr
tion observed in our experiment can be rather complex
order to receive a quantitative picture, the massive inform
tion content of recorded image sequences necessarily h
be reduced to single, characteristic measures. To date
standard procedures have been established for such a
We will apply and compare several characterization metho
All of them regard only the system response, i.e., do not r
on the knowledge of the actual forcing profile.

II. THE SYSTEM

A. The nonlinearity and the single feedback

The optical nonlinearity is provided by aliquid crystal
light valve~LCLV ! @47# . This multilayer device has a reflec
tive readside and an intensity sensitivewrite side. The write
side consists of a thin photoconductor layer and the read
is a thin liquid crystal layer. Both layers are separated b
dielectric mirror and sandwiched between two transpar
electrodes to which an external, low-frequency voltage
applied. An intensity peak of the write wave causes a lo
decrease of the photoconductor impedance. As a co
quence, the voltage across the liquid crystal layer is loca
increased, leading to reorientation of the liquid crystal m
ecules and thus to a change of the local effective refrac
index.

A read light wave passing the liquid crystal layer~and
being reflected by the internal mirror! acquires a phase pro
file, which is determined by the intensity profile of the wri
wave at the other side of the LCLV. According to this inte
sity dependence of the phase, the LCLV provides a satur
Kerr-type nonlinearity.

The LCLV is put into an optical feedback loop. A uniform
~pump! laser beam is the first phase modulated by the LC
read side. The modulated beam is then fed back to the w
side. Due to diffraction during the propagation through t
feedback loop, spatial phase modulations are transform
into intensity modulations. The LCLV transforms them ba
into a corresponding phase profile. In such a way, the fe
1-2
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SPATIAL SYNCHRONIZATION OF REGULAR OPTICAL . . . PHYSICAL REVIEW E 67, 066221 ~2003!
back is closed and the wave inside the feedback loop b
cally modulates itself.

Since the optical feedback is almost instantaneous w
respect to the LCLV response time, the system dynamic
fully determined by the relaxation-type response of
LCLV, with a time constantt in the order of tens of milli-
seconds. The system can be described by an equation fo
phase shiftF(x,y,t) induced by the LCLV@39#,

tḞ2 l 2¹'
2 F1F5S~ I w ,I f !,

S5FmaxF12tanh2S 11k r~ I w1I f !

11ks~ I w1I f !
V̂ext2V̂thD G ~1!

and by one for the intensity distributionI w(x,y,t) of the
feedback wave at the LCLV write side:

I w5uexp@2 i ~L/2k0!¹'
2 #exp~2 iF!u2I p . ~2!

The saturation functionS(I w ,I f) is determined by the LCLV
parametersFmax, k r , ks , V̂ext , V̂th . Different transverse
coupling mechanisms in the LCLV are approximated by
single diffusional term with an effective diffusion lengt
l'30 mm; ¹'

2 being the Laplacian in the transvers
coordinatesx,y. Diffraction is covered by the operato
exp(2i(L/2k0)¹'

2 ), with the propagation lengthL and the
light wave numberk052p/l. It can be shown that diffrac
tion, not diffusion, is the spatial coupling mechanism resp
sible for the modulational instability.

By substituting Eq.~2! into Eq. ~1!, we can, in principle,
arrive at a single partial differential equation in time and
the two transverse coordinates for a real scalar variable,
phase shiftF(x,y,t). The model also shows that the syste
state is completely determined by recording the write s
intensity distributionI w(x,y,t) in the experiment.

When the intensity of the pump beamI p exceeds a certain
threshold, the uniform state becomes modulationally
stable with respect to a critical transverse wave numbekc

'2pA3/(2lL) @38,39#, leading to a stationary bifurcation
patterns spontaneously develop in the cross section of
feedback wave. Experimental examples are shown in Fi
~as for the images in the remaining paper we use inverse
scale, i.e., dark corresponds to large intensities!. There are
also higher-order critical wave numbers kc

(n)

'A(4n21)/3kc present, excited at larger pump valuesI p .
In Eq. 1, the forcing is represented by the intensity dis

bution I f(x,y,t), which is ~incoherently! added to the feed
back wave intensityI w . Since the intensity distribution
I w(x,y,t) is a state variable, the forcing is additive and n
parametric.

The setup is calledsingle-feedback, since the modulated
wave is fed back to the optical nonlinearity only once,
contrast to resonators with multiple passages of the l
wave. Optical resonators, moreover, impose boundary co
tions on the optical field, resulting in the selection of spa
~longitudinal and transverse! modes. Diffractional losses an
possibly a wavelength dependence of the optical nonlinea
lead to an additional favoring of particular modes. Co
06622
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versely, a corresponding preselection of spatial profiles d
not exist in single-feedback systems.

The class of single-feedback systems has become q
popular in the last years@38,39,48,49#. The use of LCLVs as
optical nonlinearity, first introduced by Akhmano
Vorontsov et al., has proven to offer a great experiment
flexibility in various implementations. In several variants,
rotation @50,51# or a lateral shift@52# of the feedback wave
was introduced to provide a nonlocal spatial coupling. Su
geometrical transformations break the continuous symm
by distinguishing a particular angle and/or length scale.
contrast, we use the fully symmetric system with diffracti
as a global spatial coupling mechanism@53#, in correspon-
dence with the original single-feedback scheme propose
Ref. @38#. Concerning the nonlinearity, it is possible to intr
duce an additional dependence of the feedback intensity
the phase, e.g., with a resonator or a polarizer. This al
significantly the underlying nonlinearity and hence affe
the observable spontaneous patterns@39,54#. In the system
used here, the nonlinearity is of saturable Kerr type with
monotonous intensity dependence of the induced phase.

B. Experimental setup

The experimental setup is shown in detail in Fig. 2. As
light source, a frequency doubled Nd:YAG~yttrium alumi-

FIG. 1. Autonomous, unforced system at the different levels
pump intensity~as indicated!. From top to bottom: just above pat
tern forming threshold, at 2.5 times and at 7 times threshold. L
hand side, optical near fieldI w(x,y); right-hand side, optical far
field.
1-3
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R. NEUBECKER AND O. JAKOBY PHYSICAL REVIEW E67, 066221 ~2003!
num garnet! laser (l5532 nm) is used. The light power i
regulated by a rotatable half-wave plate (l/2), acting to-
gether with the internal polarizers of the optical isolator~OI!.
The beam is cleaned and expanded to a diameter of arou
cm by the 4-f-arrangement L1, P1, L2. This pump be
enters the setup via the beam splitter BS1.

The pump wave is reflected and phase modulated by
LCLV read side~liquid crystal layer! and then fed back to the
LCLV write side ~photoconductor layer! by means of beam
splitters BS1 and BS2, a mirror M1, and a penta prism M
During feedback, the modulated beam propagates freely
a distanceL5200 mm to the plane of aperture P2. The wa
front in this plane is imaged by the lenses L3, L4, L5 to t
LCLV write side. The aperture P2~diameterD58.5 mm)
cuts out the active area.

A rotatable dove prism D is used to correct residual ro
tions of the feedback wave around the optical axis, wh
may occur through slight misalignments of the mirrors.
shutter S1 in front of the LCLV write side can cut off th
feedback wave and the forcing simultaneously. In the Fou
plane between L3 and L4, an aperture P3 can be use
low-pass filter the wave, which is, however, not used in
present experiments.

For detection purposes, part of the feedback wave lea
the setup through BS2. The forcing wave, which also lea
the setup here can be blocked by an interference band
filter IF, which transmits the laser wavelength only. Hence
effect only the feedback wave is detected by the CCD ca
era. The detection path is split into two arms in such a w
that both the near field, i.e., an intensity distribution cor
sponding to the one at the LCLV write side, as well as
optical far field in the focal plane of lens L7, i.e., the spat
power spectrum of the feedback wave, are recorded simu
neously.

We use a 12-bit digital CCD camera~PCO SensiCam!
with a resolution of 6403480 pixel. Movies of up to 331
images are directly transferred to the random access mem
of the connected PC. In the present case, we used frame
of around 7 frames per second. A conventional power m
was used to control the optical power in front of the LCL
write side, of both the feedback wave and the forcing wa
The readings for white light forcing wave were scaled
illuminance units.

The LCLV is manufactured by Jenoptik LOS GmbH
Jena. We operate the LCLV with an external voltage
2.5Vpp at 170 Hz~sine wave!. The photoconductor is amor
phous silicon~thickness 3mm) and the nematic liquid crys

FIG. 2. Experimental setup. For details, please refer to the te
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tal is a conventional mixture for displays~TN0304 by
Merck, thickness 6mm).

For the particular parameter settings, ideal hexagons
hard to realize experimentally. Instead, we see only sm
hexagonal domains or even domains with quasicrystal
character~which were not observed in previous experimen
with a smaller aspect ratio!. However, even disordered spon
taneous patterns contain only the critical Fourier modes,
the corresponding far field consists of broadly excited rin
~cf. Fig. 1!. By applying an experimental control techniqu
we have recently proven that hexagons are indeed a sta
ary system state, at least up to two times threshold@40,55#.
This corresponds to a theoretical analysis of a similar sys
@38#. Consequently, by using hexagons, the system will
forced with one of its own~unstable! states—or at least a
very similar one when the forcing wave number is altere

It is possible to simplify the system by cutting off th
higher-order critical wave numbers with the spatial low pa
filter ~L3, L4, and P3!. In this case, almost perfect hexago
can be found up to several times threshold@41,42#. However,
filtering also inhibits forcing with wave numberskf.kc .
Moreover, the interaction via spatial harmonics would
blocked. Hence, in contrast to our previous experiment@56#,
low pass filtering is not applied.

Another disturbance of perfect patterns results from sm
inhomogeneities of the LCLV, caused by smooth variatio
in the thickness of the photoconductor layer. As a con
quence, the pattern formation threshold slightly varies acr
the transverse plane. In order to achieve the best poss
uniformity, only a small active area is cut out by the apertu
P2. We must also consider that—at least for the autonom
system—the presence of boundaries causes the patte
grow smoothly from the center@40#. Consequently, there is
no sharp threshold, we will here refer to an average value
I th'18.8mW/cm2.

C. Forcing

The write side of the LCLV has a broad spectral sensit
ity, which allows us to use incoherent light for the forcin
This will avoid interference between the forcing and t
feedback wave and the connected sensitivity to vibration

To generate almost arbitrary forcing patterns, we use
data projector, containing a conventional halogen bulb a
light source and a transmissive liquid crystal display~LCD!.
The display was imaged onto the LCLV write side by t
lenses L5, L6. The projector intensity was attenuated b
fixed set of neutral density filters~NF!. Each of the 832
3624 LCD pixels can take 254 gray levels. Due to a so
ware controlled linearization, the gray levels correspond t
linear change in transmitted light intensity. The projector h
an internal memory for 31 images, which are loaded b
serial interface. Since the measurements were carried
with 59 different forcing patterns, each measurement had
be interrupted once for about 25 min for loading a new se
images.

The projector illumination is not completely homog
neous across the area of the display, with a maximum in

.

1-4
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SPATIAL SYNCHRONIZATION OF REGULAR OPTICAL . . . PHYSICAL REVIEW E 67, 066221 ~2003!
sity variation of 630%. This smooth inhomogeneity wa
compensated by using the inverted illumination profile as
envelope of the forcing pattern. Due to this superimpo
modulation amplitude, the remaining modulation depth
able for the forcing profile is reduced.

The operating point of the LCLV is shifted towards sat
ration by the additional illumination@cf. Eq.~1!#. Thus, the
average of the forcing intensity had to be kept const
throughout all measurements. The modulation amplitudeAf
of the forcing profile was controlled by the gray levels of t
projector LCD only.

Before turning to the measurements, we briefly have
discuss the spatial harmonics, appearing due to the forc
Even without interaction with the spontaneously formi
pattern, the forcing intensity distributionI f(x,y) induces a
corresponding phase profile in the pump waveEp
;exp@2iF#;exp@2iS„I f(x,y)…# @cf. Eqs.~1! and~2!#. Since
the forcing pattern consists of few discrete modeskW f j only,
this nonlinearity causes—depending on the amplitude of
intensity pattern—the appearance of a number of harmon
In Fourier space, i.e., in the far field, these spatial harmon
simply are linear combinations of the fundamental wave v
tors kW f j .

The modulus of a resulting harmonic1 mode can be an
integer multiple of the fundamental wave number~‘‘straight’’
harmonic!, but can also be an irrational multiple, when t
harmonic mode is a noncollinear combination of differe
fundamental wave vectors~‘‘mixed’’ harmonic!. Hence, irra-
tional multiples of fundamental wave numbers natura
emerge in two dimensions. In the following, most importa
are the mixed harmonics with modulusA3kf andA7kf .

The resolution of all modes in the system is limited by t
aspect ratio. Due to the finite diameterD of the active area,
each mode is broadened to a widthDk'2p/D. For the
spontaneous patterns, we have an aspect ratio of 33, i.
broadening of the modes of about 3%. For the smallest fo
ing wave numbers, this broadening can reach 10%.

D. The measurements

Forcing is investigated under systematic change of
wave numberkf of the forcing pattern. Parameters for ea
such a measurement are the forcing amplitudeAf and the
pump intensityI p . As forcing, we choose peak-to-peak am
plitudes of the hexagonal patterns of 10, 35 and 138 L
gray levels with a constant offset at gray level 71. The pu
was set to values just above threshold, to 2.5 times thres
and to 7 times threshold. During each measurement,
pump intensity was checked to be constant within63%.
With these settings, eight measurements were carried o
the parameter field (Af ,I p), as schematically depicted in Fig
3. We renounced on a measurement with low forcing am
tude and large pump intensity, since it appeared that forc
would have no effect.

1Sometimes the term ‘‘harmonic’’ is used for the fundamen
modes themselves, while instead here, we use it for linear com
nations of those.
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For each fixed set of the parameters (Af ,I p), measure-
ments were carried out under systematic variation of
forcing wave numberkf . The upper limit ofkf was given by
the spatial resolution of the LCD in the data projector. W
used a minimum wavelength of 6 pixels and a maximu
wavelength of 60 pixels. This resulted in a range of 0.2
<kf /kc<2.75, covered with 59 sample points.

For each fixed forcing pattern, the system was switch
on by opening the shutter S1 in front of the LCLV write sid
In such a way, the system itself is switched on simul
neously with the forcing. We have found in other expe
ments that this choice results in considerably shorter tr
sients than for the case that the system is switched on
and the forcing has to reorder an already existing struc
@57#. Just before opening the shutter, the camera was sta
recording a sequence of 331 images with a duration
around 45 s. The measurement for a specific paramete
(Af ,I p) took about one day. All measurements together c
respond to around 100 Gb of raw image data, which make
necessary to apply a computer based analysis to identify
ticular interesting system responses.

After each recording, the pump wave was blocked and
LCLV was ‘‘blinded’’ for a short period by an intense whit
light to erase any possible residual memory of the last p
tern state. During the variation of the forcing pattern, a nu
ber of measurements of the autonomous, i.e., unforced
tem were carried out, referred to asreference measuremen
in the following. For this means, the LCD was set to t
uniform offset level.

As already mentioned, each measurement had to be in
rupted once for about half an hour, to load the projector w
a new set of images. Also, the forcing wave number was
changed monotonously. Starting at large values,kf was sys-
tematically decreased, but a number of intermediate la
values were recorded later. The analysis of the recorded
revealed that the system appeared to have drifted slig
during the measurement. The reordering of the sample po
seemingly leads to jumps in some of the extracted quan
tive measures. All of the measures derived below were c

l
i-

FIG. 3. Location of the measurements in the parameter fi
forcing amplitudeAf and pump intensityI p . The numbers in brack-
ets denote the estimated relative forcing strength, as discusse
Sec. II E.
1-5



ow
n

la
e
ul

o
e
T
ir
n

bo
or
ar

n

ll
ar
v

m
rin
2

of
ia
la

-
tiv
nt
on
he

v
m
em
ct
is
e
r
th

ber
is

com-
the
re-

ase

ut
eld

hex-

this
rate
s

R. NEUBECKER AND O. JAKOBY PHYSICAL REVIEW E67, 066221 ~2003!
rected with the help of the reference measurements. H
ever, due to the limited number of reference measureme
complete correction was not possible.

The drift was presumably caused by changes in the
temperature—the LCLV is qualitatively known to be som
what temperature sensitive. Depending on the partic
measurement, the temperature change could reachDT
52 K during the day and less than 4 K between different
days.

E. Forcing strength

A statement of the forcing strength, i.e., the amplitude
the forcing intensity modulation, makes only sense wh
compared to the amplitude of the spontaneous patterns.
forcing pattern itself is well defined, consisting of three pa
of conjugated Fourier modes with given amplitudes. In co
trast, the spontaneous system state, particularly further a
threshold, is determined by the excitation of one or m
critical rings in Fourier space. We have found the stand
deviationsw of the near field intensity distributionI w to be a
suitable measure to compare the spontaneous excitatio
the imposed one:

sw5A 1

N21 (
j 51

N

~ I w j2^I w&!2. ~3!

Here,I w j is the intensity at pixel numberj of the CCD cam-
era, ^I w& is the average value, and the sum goes over aN
pixels. We have found that, in particular, the relative stand
deviation of the spontaneous patterns does not depend
much on the pump intensitysw /I p'0.78163 %.

In a separate measurement, the white forcing light is co
pared to the monochromatic feedback wave by measu
the phase shift induced in the LCLV. An illuminance of 7.0
lx induces the same phase shiftF as a monochromatic write
intensity of 1mW/cm2. Together with the dependence
DI f50.449 lx per LCD gray level, and the standard dev
tion of an ideal hexagon, we arrive at a corresponding re
tive standard deviation of the forcing patterns ofs f /Af
50.1286mW/(cm2) per gray level.

In Fig. 3, the ratioss f /sw between both standard devia
tions are given in brackets as an estimation of the rela
forcing strength. Within this definition, our measureme
vary between weak forcing of some few percent and str
forcing, where the forcing amplitude is in the order of t
spontaneous excitation.

III. RESULTS

A. Synchronization

Under variation of the forcing wave number, we obser
an almost binary response of the system. Either, it co
pletely locks onto the forcing, which means that the syst
state becomes steady state and has a similar spatial stru
and the same orientation as the forcing pattern. Otherw
the system reacts with pronounced spatiotemporal disord

A first impression can be gained from the snapshots p
sented in Fig. 4. Clearly, the system is entrained when
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forcing wave number equals the basic critical wave num
kf5kc . In order to achieve a more quantitative picture, it
necessary to extract adequate measures from the often
plex system response. Here, we renounce on computing
cross correlation between forcing patterns and system
sponse, since this would not cover possible spatial ph
shifts between both.

B. Wave number spectrum

The recorded far field gives valuable information abo
which wave numbers are excited. For this means, the far fi

FIG. 4. Examples of snapshots of the system response to
agonal forcing at different wave numbers~as indicated!. The images
are presented in inverse gray scale~dark 5 large intensity!. For
comparison, the top patterns present the unforced system. In
example, the pump intensity just above threshold and a mode
forcing amplitude is applied (Af535). Presented are the near field
~lhs column! and the far fields~rhs!.
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intensity distributionI far(kW ) is integrated over the angle, thu
reducing the two-dimensional wavevector spectrum to a
one-dimensional wavenumberspectrumI k .

The wave number spectrum is first computed for the r
erence measurements to identify the spontaneously ex
wave numbers. In Fig. 5, the basic critical wave numberkc

5kc
(1) and at least three higher-order critical wave numb

kc
(n) are clearly identifiable. These do not change consid

ably between the measurements. The resulting values ofkc
(n)

have an error of63%, which is around twice the resolutio
of this evaluation, limited by the pixel size of the CCD cam
era. The approximative relation between the different criti
wave numberskc

(n)'A((4n21)/3)kc @38# is plotted for
comparison~right-hand side of Fig. 5!.

In Fig. 6, I k is shown for the forcing measurements. T
individual plots are schematically arranged according to
location of the parameter pair (Af ,I p) in the parameter
plane, as depicted in Fig. 3; the pump intensity increa
from left- to right-hand side, the forcing strength increas
from bottom to top. In each individual graph, the abscis
represents the scaled wave numberkfar of the far field, the
ordinate is the scaled forcing wave numberkf and I k is
shown in inverted gray scale. The pronounced vertical li
correspond to the different critical wave numberskc

(n) ,
which are almost always excited. The excitation induced

FIG. 5. Left-hand side: identification of the critical wave num
bers from the reference measurements. Right-hand side: che
the approximate relation between the different order critical w
numbers.

FIG. 6. Wave number spectra~in inverse gray scale! as a func-
tion of far field wave numberkfar and forcing wave numberkf . The
plots are arranged according to the values of the parameter
(Af ,I p): the forcing strength increases from bottom to top, t
pump intensity from left- to right-hand side.
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the forcing is reflected in different oblique straight lines, b
longing to the forcing wave numberkfar;kf and the different
harmonics of the forcing modes. As expected, the effec
forcing is found to be most pronounced for large forci
strength and low pump power.

Figure 7 shows a particular measurement in more de
The added straight lines correspond to slopes ofkf /kfar51,
1/A3, 1/2, 1/A7, and 1/A13, verifying that all these harmon
ics are indeed excited. Diffusion damps higher wave nu
bers, which explains the lower excitation of higher harmo
ics. The third straight harmonic wave number 3kf is not even
visible anymore, while theA7 mixed harmonic still is
present, because 12 instead of just 6 modes have this m
lus. Close to theA13 harmonic, the 2A3 harmonic exists.
Together, these represent 18 modes, which in the same m
ner balances the diffusional damping.

Two important findings can be taken from Fig. 6. First,
the system locks onto a particular forcing wave numb
power is even drawn out of other critical wave numbers. T
is most prominent forkf5kc

(2)'1.5kc ~for strong forcing,
small or medium pump power!, when even the excitation o
the fundamental critical wave number is reduced.

Second, we find a ‘‘mode pulling’’ effect, when the forc
ing wave numberkf comes close to one of the critical wav
numberskc

(n) . In the wave number spectrum, this corr
sponds to the vicinity of a crossing between an oblique an
vertical line. Here, the excitation completely migrates fro
the critical wave number into the forcing wave number.

C. Spectral localization

There is a rather simple method to characterize the de
of spatial order by utilizing the far field. For periodicall
patterns, the total power in the far field is distributed amo
few, localized modes, while the spatial disorder correspo
to broadly excited areas. Consequently, localized modes
respond to large values appearing in the frequency distr
tion of the far field intensities, while in the disordered ca
the maximum intensity will be considerably lower. The m
jority of the amplitudes will, however, always be zero
very small.

Nevertheless, with the standard deviation of the far fi
intensity distributions far , the presence of localized mode
can be detected. In this analysis, the zero order was cut
since it is always localized, carrying the largest amplitude
the far field. Deleting the zero order makes also sense in

of
e

air

FIG. 7. Wave number spectrum for large forcing amplitude a
medium pump intensity. In the rhs panel, straight lines are add
denoting the expected slopes for different harmonics of the forc
wave number.
1-7
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respect that we are only interested in spatial modulation
The computation of the far field standard deviations far

allows us to follow the dynamics of the forced patterns. T
temporal evolution ofs far(t), presented in Fig. 8, shows tha
the transients are rather short. After typically less than 2
the system is in its asymptotical state. Only close to p
nounced locking regimes, the transient can take longer,
never more than few seconds. Hence, the largest part o
recorded system response corresponds to the statistically
tionary state.

The standard deviations far was computed for a represen
tative number of images from each sequence and avera
The result for all forcing measurements is plotted over
scaled forcing wave number in Fig. 9. The horizontal lin

FIG. 8. Typical temporal evolution of the far field standard d
viation for kf /kc51.03~solid line!, 51.61~dashed line!, and52.64
~dash-dotted line!. The pump intensity is set just above thresho
and the forcing amplitude is medium (Af535).

FIG. 9. Standard deviation of far field intensitiess far ~in arbi-
trary units! plotted against the scaled forcing wave number~in loga-
rithmic scale!. The plots are arranged schematically in parame
plane according to the values ofAf ~increasing from bottom to top!
and I p ~increasing from left- to right-hand side!. The horizontal
lines correspond to the unforced system, the vertical, dotted l
indicate expected resonances atkf5kc , A3kf5kc , kf5kc

(2) , and
for strong forcing also atA7kf5kc .
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represent the average values of the reference measurem
of the unforced systems. The dependence of these refer
values on the pump intensity reflects the general tendenc
a decreasing spatial order with an increasing pump stren

The important point here is the appearance of a numbe
peaks. These indicate different locking regimes, where
system response collapses from a broad spectral excitatio
few modes. Again, we find that the effect of forcing increas
with forcing amplitude~from bottom to top in Fig. 9! and, in
general, becomes weaker with increasing pump power~from
left- to right-hand side in Fig. 9!. In particular, the peaks
become more pronounced and wider with increasing forc
strength. This phenomenon appears to be a spatial analo
the Arnold tongues@1#.

The most prominent peak, which is present in almost
ery measurement, belongs to the locking of the forcing wa
number onto the fundamental critical wave numberkf5kc .
The other peaks belong either to a locking of a harmonic
the forcing pattern ontokc or to a locking of the forcing onto
a higher critical wave number. In particular, we find th
mixed forcing harmonicsA3kf and A7kf to lock ontokc .
Also, the entrainment ofkf5kc

(2) is observed. By chance, th
locking at A3kf5kc coincides with a locking of anothe
forcing harmonic on the second critical wave numberA7kf

5kc
(2)5A7/3kc . Dashed vertical lines in Fig. 9 indicat

these ratios betweenkc
(n) andkf . We see so far no indication

of locking at integer ratioskf52kc or 2kf5kc , even though
this second harmonic of the forcing has already been ide
fied to be excited in Fig. 6.

The different locking constellations are demonstrated
Fig. 10, where the near field and the far field of the syst
response are shown. From the location of the modes in
far field, the described relations between forcing modes
critical wave numbers can easily be verified. We note t
some near field patterns in Fig. 10 are less ordered in
lower central part. We assign this to the influence of t
remaining inhomogeneity of the LCLV. For the small forcin
wave number atkf5kc /A7, we observe small bright spot
ordered around darker and larger ones. The size of the s
spots corresponds to the spontaneous patterns. The l
spots result from the fact that we have a defocussing non
earity. In a very simple picture, each~large! spot of the forc-
ing pattern can be imagined to induce a defocussing len
the LCLV read side, i.e., the pump intensity is refracted o
of these areas.

So far, the quantitative analysis of the far field does n
yield information about the~rotational! symmetry of the
evolving patterns. Also, not much can be deduced abou
possible dynamics of the system state, either due to in
mode dynamics or due to any dynamics hidden in the pha
of the modes—such as in the case of moving patterns
waves.

D. Characterization of the dynamics

Rather the opposite approach to characterize the sys
response is to consider the dynamics only, completely ign
ing any spatial order. For this means, we compute the a
correlation of the local temporal evolution of the near fie

-
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es
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Included are only the last two-third of every recorded
quence, in order to be sure to omit the transients. The a
correlation is averaged in space as

^K~Dt !&x,y5E Î w~x,y,t2Dt ! Î w~x,y,t !dt dx dy. ~4!

FIG. 10. System response in the unforced case~top!, compared
to typical locking constellations, as indicated. The pump intensit
2.5 times threshold, forcing is strong.
06622
-
o-

Here,Î w(x,y,t)5I w2^I w& is the recorded intensity sequenc
I w(x,y,t), subtracted by its average^I w&.

From the spatially averaged autocorrelation function,
can extract a typical time constanttd by fitting an exponen-
tial function into the first decay. The fit interval is adapted
the steepness of the decay. A large value oftd corresponds to
slow dynamics or even a static pattern. The maximum
tectable value oftd is limited to around 30 s, which is the
duration of the analyzed sequences.

Figure 11 presents the time constants for all measu
ments, plotted over the scaled forcing wave number.
again find the typical peak structure, indicating the differe
locking regimes. Obviously, in the case of locking, the sta
forcing patterns ideally cause a static system response.
underlying tendency of the unforced system to build up
turbulent state leads to a residual dynamics. As a con
quence, the observed time constants decrease with increa
pump power.

In comparison with the results of the preceeding secti
we here see a more pronounce locking, i.e., a peak of la
time constant, at low forcing wave number, high forcing a
plitude, and low and medium pump intensity. The rath
broad peak probably contains a resonance atA7kf5kc ,
marked by vertical lines.

We also note a rather fluctuating background fortd(kf),
in particular, for the case of weak forcing and medium pum
intensity. Part of these fluctuations, in particular, the jump
kf /kc'0.75 and the smaller dips atkf /kc.1.4 are caused by
the above mentioned drift and the reordering of the sam
points. Moreover, the time constants found for the refere
measurements vary between the different parameter
This is the consequence both of the drift and of the gen
dependence of the time constant on the pump intensity@41#.

E. Degree of spatial symmetry

Finally, we characterize the degree of spatial order
quantifying the degree of hexagonal symmetry@58#. We

s

FIG. 11. Time constants characterizing the near field dynam
plotted against the scaled forcing wave number, in double logar
mic scale. Note the different scales fortd . The plots are arranged
schematically in parameter plane according to the values ofAf ~in-
creasing from bottom to top! and I p ~increasing from left to right-
hand side!.
1-9
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again use autocorrelation functions, now correlating an in
vidual snapshot to its rotated counterpart.

C~u,x0 ,y0!5E u Î w~x,y! Î w~x8,y8!udx dy, ~5!

x8,y8 being the rotated coordinates andu the rotation angle.
This is done for many rotation centers (x0 ,y0), over which
we averageC(u,x0 ,y0)→^C(u)&x0,y0. The resulting average
rotational autocorrelation function will peak at angles ofu
52p/N, when the analyzed structure contains anN-fold ro-
tational symmetry. Assuming that only a limited number
discrete rotational symmetries are present, the contribut
to the different peak amplitudes can be decomposed@58#.
This yields several symmetry parameters, measuring
presence of roll-, square-, or hexagon-patterns. Moreo
quasipattern symmetries can be detected. We will here
only the measure for the hexagonal symmetryH5 1

2 @^C(u
560°)&1^C(u5300°)&#2O, whereO stands for a constan
offset corresponding to a continuous symmetry, e.g., cau
by the spatial noise.

From the present analysis, we find—with on
exception—no presence of other rotational symmetries,
ther tiling patterns (N52, 3,4! nor quasipatterns (N58, 12!.
The exception is a small contribution of twofold symmetry
kf5kc

(2) , for large forcing amplitude and low and mediu
pump power. In these particular cases, we also find that
of the six modes on the second critical circle are stron
excited than the others. For this finding, we do not have
explanation so far.

The average of the hexagonal symmetry parameteH
found for a representative number of images of each
quence is plotted in Fig. 12 over the forcing wave numb
This symmetry analysis gives the clearest peak struct
Again, we find the same locking regimes as before, wh
means that locking is always connected to a hexagonal
tem response. Compared to the analysis of the dynamics

FIG. 12. Hexagonal symmetry parameterH, characterizing the
average degree of sixfold symmetry, plotted over the scaled for
wave number~in logarithmic scale! for all measurements. The plot
are arranged schematically in parameter plane according to the
ues ofAf ~increasing from bottom to top! and I p ~increasing from
left- to right-hand side!.
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fluctuations in the plots ofH(kf) are considerably smaller
This indicates that the above mentioned influence of te
perature drifts mainly affects the LCLV time constantt.

The main peak atkf5kc seems to have a double pea
structure, at least for stronger forcing. This results poss
from a resonance atA3kf5kc

(2)⇒kf /kc50.882. This as-
sumption is supported by the corresponding wave num
spectrum in Fig. 6.

For strong forcing and medium pump intensity, an ex
peak is observable between thekf /kc5A3 and thekf /kc
51 locking regimes, with its peak value atkf /kc50.723.
The corresponding patterns are shown in Fig. 13. In fact,
peak would be compatible with a resonance of theA7 har-
monic of the forcing on the third critical wave number
kc

(3)5A11/3kc . However, these wave numbers are all qu
large and strongly damped. It does not seem very reason
that these should induce such a pronounced locking.

There is an alternative, although purely empirical exp
nation, which also yields a good quantitative corresponde
@59#: The rational winding numbers of nonlinear resonanc
in oscillators can be found from the Farey construction@60–
62#. A particular m:n resonance has two ‘‘parent’’ resonanc
at ratios p:q and r:s between the forcing and the natural
quency. The resulting winding number is found by addi
nominators and denominators separatelym5p1r , n5q
1s. To receive the full Farey tree, one has to start with
ratios 0:1 and 1:1 and to carry on with all possible combin
tions. Devil’s staircase, which is well known to contain a
winding numbers of particular nonlinear oscillators, is ju
one branch of the Farey tree.

In our case, the peak in question is the ‘‘child’’ of th
adjacent resonances, resulting in an expected winding n
ber of (111)/(11A3)'0.732, which is in good agreemen
with the experimental value. Higher-order children res
nances are less excited and therefore here we see onl
child of the two dominant basic resonances.

The application of this scheme can also reproduce
absence of simple 1:2, 1:3, 2:3, etc., resonances. Follow
the Farey construction, these rational winding numbers

g

al-

FIG. 13. Comparison of unforced system response~upper pan-
els! with the one for locking atkf50.716kc ~lower panels! at
strong forcing and medium pump. For better visualization, the c
cal wave number circles have been added.
1-10
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all based on the presence of the fundamental 0:1 wind
number. However, such a 0:1 ‘‘resonance’’ does not appea
our system; a spatially uniform forcing (kf50) leads to a
constant phase shift of the read wave, which does not a
the write side intensity distribution. Hence, the system d
not respond to a uniform forcing—at least as long as sat
tion effects due to strong forcing are negligible.

In a previous publication@15#, a spatial period tripling had
also explicitly been predicted for forcing a two-dimension
system with hexagonal patterns and has not been found h
The system considered there was assumed to exhibit a
tiotemporal Hopf bifurcation, which is in contrast to the o
tical system investigated here.

For one-dimensional systems, the analysis of theoret
models had lead to the prediction of quasipatterns@9#, which
are also not observed in our experiment. This may be c
nected to the difference in dimensionality of the system
The questions of forcing induced defects, which had a
been found in one-dimensional models, is still open. T
image data, gathered in our experiment, have not yet b
analyzed in this respect.

IV. CONCLUSION

We have presented experimental results on spatially p
odic forcing of a nonlinear optical, pattern forming syste
Forcing was carried out under a systematical variation of
forcing wave number and for different values of forcin
strength~between several and about 100% of the natural p
tern amplitude!, and also for different values of the contr
parameter, the pump intensity.

We found that the spontaneous optical structures can
entrained by an external forcing with static patterns. T
entrainment can even be observed far above threshol
pattern formation. A number of different locking regime
were found, which are mostly caused by a resonance of
forcing wave number or one of its spatial harmonics with
fundamental or the first higher-order critical wave number
contrast to one-dimensional systems, irrational multiples
the fundamental wave number generically appear as sp
harmonics. The width of the observed locking regimes
creases with forcing strength, which is in obvious analogy
the Arnold tongues in one-dimensional systems.

One of the observed locking regimes can successfully
explained by an extension of the Farey construction, whic
used to derive the rational winding numbers in a purely te
poral synchronization. The connection to the Farey sche
which does not explain the underlying physical mechanis
is only empirical and certainly needs verification in oth
systems.

The role of the control parameter appears to be in gen
to counteract the forcing: with increasing pump intensity,
locking regimes become fewer and smaller. This correspo
well to the role of the control parameter in the unforc
06622
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system, namely, to promote disorder with increasing dista
from threshold.

The system response has been quantitatively characte
with respect to the spectral localization~presence of local-
ized Fourier modes!, the dynamics and the rotational sym
metry. All measures give very similar results, from which w
conclude that the system response in the case of loc
always is a static hexagonal pattern and a very disorde
and dynamic state otherwise. The analysis of the far fi
also revealed that, in the case of locking, spectral powe
concentrated on the excited~forcing! mode, draining power
also from other critical wave numbers.

In a conceptually similar investigation of forcing of
reaction-diffusion system, Dolniket al. also observed some
regimes of entrainment, however, at different forcing wa
numbers. So far, it is not clear that whether these differen
are due to differences in the underlying systems, in the
perimental procedure or in the data analyses.

Our findings indicate that in two-dimensional systems
wealth of resonances can appear. Besides the various
nances between the different order critical wave numbers
the forcing and its spatial harmonics, resulting children re
nances may be expected. Even though the aspect
achieved here is rather high—at least for optical pattern
mation experiments—the wave number definition is limit
by the aspect ratio. This possibly promotes a merging
different locking regimes. For a more precise determinat
of locking regimes, this restriction has to be overcome in
pendently of the type of system.

The presented experiment has shown that an exten
nonlinear system can successfully be synchronized by
posed structures. The underlying mechanisms appear t
quite general. Therefore, similar synchronization—or rat
synchorization~from xvrion: place!—phenomena should
be observable in many other extended systems as well. E
though we demonstrated locking onto regular system sta
the results give hope that synchorization of more comp
states, i.e., of spatiotemporal chaos is also possible. A
from the fundamental aspects, this would open the persp
tive for a realization of parallel secure data transmission
proposed recently@63#.
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Rev. A52, 791~1995!; B. Thüring et al., Asian J. Phys.7, 453
~1998!.

@40# R. Neubecker and E. Benkler, Phys. Rev. E65, 066206~2002!.
@41# R. Neubecker, B. Thu¨ring, M. Kreuzer, and T. Tschudi, Chaos

Solitons Fractals10, 681 ~1999!.
@42# G. Schliecker and R. Neubecker, Phys. Rev. E61, R997

~2000!.
@43# M.A. Vorontsov and A.Yu. Karpov, J. Mod. Opt.44, 439

~1997!.
@44# S. Longhi, Phys. Rev. A56, 2397~1997!.
@45# P.Y. Wang, P. Xie, J.-H. Dai, and H.-J. Zhang, Phys. Rev. L

80, 4669~1998!; P.Y. Wang and P. Xie, Phys. Rev. E61, 5120
~2000!.

@46# P.Y. Wang and M. Saffman, Opt. Lett.24, 1118 ~1999!; R.
Meucci, A. Labate, M. Ciofini, and P.Y. Wang, Quantum Sem
classic. Opt.10, 803 ~1998!.

@47# Yu.D. Dumarevskiiet al., Sov. J. Quantum Electron.14, 493
~1984! @Kvantovaya Elektron.~Moscow! 11, 730~1984!#; Spa-
tial Light Modulator Technique, edited by U. Efron~Marcel
Dekker, New York, 1995!; W.P. Bleha, Laser Focus/Electro
Optics19, 110~1983!, and references therein; N. Hawlitsche
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